Search for the Higgs boson in the WW decay channel with the ATLAS Detector Heather M. Gray on behalf of the ATLAS Collaboration Presented on 1 September 2011 at SUSY 2011 Fermilab, Chicago #### Introduction - LHC searches are rapidly closing in on the SM Higgs boson - With 1-2 fb⁻¹ of data, ATLAS has sensitivity for 140 < m_H < 410 GeV - The H→WW is particularly sensitive in the intermediate mass range - H→WW*→IvIv (ee, μμ and eμ) see ATLAS-CONF-2011-134 - H→WW→Ivjj (e and μ) see ATLAS-CONF-2011-052 - Focus on IvIv with an expected exclusion of 135-196 GeV (95% CL) with L=1.7 fb⁻¹ ## **The ATLAS Detector** The H→WW→IvIv Analysis ## The H→WW→IvIv Analysis - The H→WW^(*)→IvIv channel combines the large H→WW branching ratio with a clean final state - Analysis performed for 110 < m_H < 300 GeV - Recently updated to 1.7 fb⁻¹ - Using high performance btagging algorithm - Cuts re-optimised in high mass region: m_H > 220 GeV ### **Lepton Selection** - Select events containing exactly two opposite sign leptons (e or μ) - Cut on dilepton invariant mass to reduce Drell-Yan background - ee, $\mu\mu$: $m_{II} > 15$ GeV, $|m_{II}$ $m_{Z}| > 15$ GeV - eμ: m_{II} > 10 GeV - Note: systematic error bands include normalisation but not shape uncertainty ## Require large missing energy - Require missing energy to suppress QCD and Drell-Yan backgrounds - Use E^{miss}_{T,rel} instead of E_{T,miss} $$E_{\mathrm{T,rel}}^{\mathrm{miss}} = \left\{ \begin{array}{ll} E_{\mathrm{T}}^{\mathrm{miss}} & \text{if } \Delta\phi \geq \pi/2 \\ E_{\mathrm{T}}^{\mathrm{miss}} \cdot \sin \Delta\phi & \text{if } \Delta\phi < \pi/2 \end{array} \right.$$ $$\Delta \phi = \min(\Delta \phi(E_T^{\text{miss}}, \ell), \Delta \phi(E_T^{\text{miss}}, j))$$ - Same flavour: E_{T,rel} > 40 GeV - Opposite flavour: E^{miss}_{T,rel} > 25 GeV | | WW | Z/γ^* + jets | tt | tW/tb/tqb | $WZ/ZZ/W\gamma$ | Total Bkg. | Observed | |---|-------------------------------|-----------------------------------|----------------------------------|------------------------------|--------------------------|------------------------------------|----------------| | $m_{\ell\ell} > 15 \text{ GeV},$
$m_{eu} > 10 \text{ GeV}$ | 1380 ± 100 | 970000 ± 70000 | 6200 ± 600 | 630 ± 70 | 1200 ± 100 | 970000 ± 70000 | 997813 | | $ m_Z - m_{\ell\ell} > 15 \text{ GeV}$ | 1220 ± 80
660 ± 50 | 91000 ± 7000
300 ± 200 | 5500 ± 600
2700 ± 300 | 560 ± 60
310 ± 40 | 92 ± 9
28 ± 4 | 98000 ± 7000
4000 ± 500 | 104253
4051 | | $E_{ m T,rel}^{ m miss}$ | 000 ± 30 | 300 ± 200 | 2100 ± 300 | 310 ± 40 | 20 ± 4 | 4000 ± 300 | 4031 | ## **Jet Multiplicity** - Further categorise events by jet multiplicity for jets with $p_T > 25$ GeV, $|\eta|$ < 4.5 - 0j: Zero jets - 1j: Exactly 1 jet, no b-tag - Different signal sensitivity and background composition - Cuts for 0j: Cuts: $p_T^{\parallel} > 30 \text{ GeV}$ - Cuts for 1j: - no tagged b-jets - p_T^{tot} < 30 GeV - $|m_{\tau\tau} m_Z| < 25 \text{ GeV}$ $$\mathbf{p}_T^{tot} = \mathbf{p}_T^{l1} + \mathbf{p}_T^{l2} + \mathbf{p}_T^{j} + \mathbf{p}_T^{miss}$$ ## **Topological Selection** - Irreducible WW background: topological cuts to exploit Higgs mass and spin - Values optimised in 3 Higgs mass ranges - Dilepton Invariant Mass, m_{II} - m_{II} < 50 GeV (m_H < 170 GeV) - m_{II} < 65 GeV (170 <= m_{H} < 220 GeV) - $50 < m_{II} < 180 \text{ GeV } (m_H >= 220 \text{ GeV})$ - Opening angle between leptons, Δφ - $\Delta \phi < 1.3 \ (m_H < 170 \ GeV)$ - $\Delta \phi$ < 1.8 (170 <= m_H < 220 GeV) - Sliding cut on transverse mass, m_T - \bullet 0.75 m_H < m_T < m_H (m_H < 220 GeV) - \bullet 0.6 m_H < m_T < m_H (m_H >= 220 GeV) $$m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 - (\mathbf{p}_{\rm T}^{\ell\ell} + \mathbf{p}_{\rm T}^{\rm miss})^2}$$ ## **Backgrounds** *0j: estimate top background from b-jet survival probability ## $H \rightarrow WW \rightarrow IVIV + Oj$ e.g. $m_{H} = 150 \text{ GeV}$ | | Signal | WW | W + jets | Z/γ^* + jets | $t\bar{t}$ | tW/tb/tqb | $WZ/ZZ/W\gamma$ | Total Bkg. | Observed | |---|---------------|---------------|---------------|---------------------|---------------|---------------|-----------------|---------------|----------| | Jet Veto | 82 ± 17 | 430 ± 40 | 70 ± 40 | 160 ± 150 | 37 ± 13 | 28 ± 7 | 11 ± 3 | 740 ± 160 | 738 | | $ \mathbf{P}_{\mathrm{T}}^{\ell\ell} > 30 \text{ GeV}$ | 79 ± 17 | 390 ± 40 | 60 ± 30 | 28 ± 11 | 35 ± 12 | 25 ± 7 | 10 ± 3 | 540 ± 80 | 574 | | $m_{\ell\ell} < 50 \text{ GeV}$ | 56 ± 12 | 98 ± 13 | 17 ± 7 | 12 ± 7 | 6 ± 3 | 4.8 ± 1.5 | 1.2 ± 0.4 | 139 ± 20 | 175 | | $\Delta \phi_{\ell\ell} < 1.3$ | 48 ± 11 | 76 ± 10 | 9 ± 4 | 8 ± 6 | 5 ± 2 | 4.8 ± 1.5 | 1.1 ± 0.3 | 105 ± 16 | 131 | | $0.75 m_H < m_{ m T} < m_H$ | 34 ± 7 | 43 ± 6 | 5 ± 2 | 2 ± 4 | 2.2 ± 1.4 | 1.2 ± 0.8 | 0.7 ± 0.3 | 53 ± 9 | 70 | | ee | 5.2 ± 1.2 | 6.2 ± 0.9 | 0.9 ± 0.4 | 0.8 ± 1.4 | 0.3 ± 0.3 | 0 ± 0.3 | 0.07 ± 0.05 | 8.2 ± 1.7 | 9 | | $e\mu$ | 17 ± 4 | 22 ± 3 | 2.8 ± 1.3 | 0 ± 1.3 | 1.1 ± 0.5 | 0.8 ± 0.6 | 0.31 ± 0.19 | 27 ± 4 | 32 | | $\mu\mu$ | 11 ± 2 | 14 ± 2 | 1.0 ± 0.6 | 1 ± 3 | 0.8 ± 1.1 | 0.4 ± 0.4 | 0.31 ± 0.09 | 18 ± 5 | 29 | ## H→WW→IνIν + 0j Limits - Exclude a range of Higgs masses with the 0j channel alone - Kink due to cut change at m_H = 220 GeV ## $H \rightarrow WW \rightarrow |v|v + 1j$ e.g. $m_{H} = 150 \text{ GeV}$ | | Signal | WW | W + jets | Z/γ^* + jets | $t\overline{t}$ | tW/tb/tqb | $WZ/ZZ/W\gamma$ | Total Bkg. | Observed | |--------------------------------------|---------------|---------------|-----------------|---------------------|-----------------|---------------|-----------------|---------------|----------| | 1 jet | 41 ± 7 | 158 ± 16 | 31 ± 19 | 60 ± 60 | 390 ± 100 | 140 ± 20 | 10.7 ± 1.4 | 800 ± 120 | 756 | | <i>b</i> -jet veto | 40 ± 7 | 154 ± 16 | 29 ± 18 | 60 ± 50 | 140 ± 40 | 54 ± 9 | 10.6 ± 1.4 | 450 ± 70 | 440 | | $P_{\rm T}^{\rm tot} < 30~{\rm GeV}$ | 32 ± 6 | 127 ± 13 | 16 ± 9 | 30 ± 30 | 90 ± 20 | 41 ± 7 | 7.0 ± 0.9 | 310 ± 50 | 312 | | $Z \rightarrow \tau \tau$ veto | 32 ± 6 | 124 ± 14 | 14 ± 7 | 30 ± 20 | 84 ± 19 | 39 ± 7 | 6.8 ± 1.4 | 300 ± 30 | 301 | | $m_{\ell\ell} < 50 \mathrm{GeV}$ | 22 ± 5 | 27 ± 5 | 2.1 ± 1.0 | 8 ± 6 | 17 ± 6 | 9 ± 2 | 1.5 ± 0.4 | 64 ± 10 | 69 | | $\Delta \phi_{\ell\ell} < 1.3$ | 19 ± 4 | 21 ± 4 | 1.8 ± 0.9 | 4 ± 5 | 14 ± 5 | 8 ± 2 | 1.2 ± 0.3 | 50 ± 9 | 54 | | $0.75 m_H < m_{ m T} < m_H$ | 12 ± 3 | 10 ± 2 | 0.8 ± 0.4 | 1.1 ± 1.8 | 6.9 ± 1.9 | 3.4 ± 1.4 | 0.6 ± 0.3 | 23 ± 4 | 23 | | ee | 1.7 ± 0.4 | 1.4 ± 0.4 | 0.12 ± 0.06 | 0.07 ± 0.12 | 0.6 ± 0.3 | 0.5 ± 0.3 | 0.10 ± 0.09 | 2.8 ± 0.7 | 5 | | $e\mu$ | 6.3 ± 1.5 | 5.7 ± 1.3 | 0.5 ± 0.3 | 0.6 ± 1.0 | 3.7 ± 1.3 | 2.0 ± 1.0 | 0.39 ± 0.20 | 13 ± 3 | 11 | | μμ | 3.9 ± 0.9 | 3.3 ± 0.7 | 0.1 ± 0.2 | 0.5 ± 0.5 | 2.6 ± 1.5 | 1.0 ± 0.9 | 0.08 ± 0.06 | 8 ± 2 | 7 | | | | | | | | | | | | ## $H \rightarrow WW \rightarrow IVIV + 1j$ Limit - Lower sensitivity than 0j but very close the SM cross-section at m_H = 160 GeV - Good agreement between the observed and expected limits at low Higgs mass #### H→WW→IVIV Exclusion Limit - A SM Higgs boson with 154 < m_H < 186 GeV is excluded at 95% CL by combining 0j and 1j - Expected exclusion range is 135 < m_H < 196 GeV - Observed limit is within 2σ of the expected limit over the full range ## Significance and p-values - Compare expected significance as a function of Higgs boson mass to measured significance - $\sim 2\sigma$ excess for m_H < 150 GeV, smaller than that observed with 1 fb⁻¹ - p-value is consistent with background only hypothesis within 2σ The H→WW→Ivqq Analysis ## The H→WW→Ivqq Analysis - At larger Higgs mass, it becomes possible to separate the H→WW→Ivqq decay from the large backgrounds - Analysis performed for 240 GeV < m_H < 600 GeV - Greatest sensitivity for m_H = 500 GeV - Select events containing one lepton, large E_Tmiss and jets - Exactly one lepton (e, μ) with p_T > 30 GeV - E_T^{miss} > 30 GeV - Either 2 or 3 jets with $p_T > 25$ GeV within $|\eta| < 2.4$ - Two jets with 71 < M_{jj} < 91 GeV - Veto events if any jet is b-tagged - Reconstruct Higgs mass (M_{lvqq}) by imposing $M_{lv}=M_W$ and $M_{qq}=M_W$ - \bullet Search for bump in the $M_{l\nu qq}$ distribution above the strongly falling background #### **Selection and Mass Distributions** | | H(evqq) + 0j | $H(\mu\nu qq) + 0j$ | H(evqq) + 1j | $H(\mu\nu qq) + 1j$ | H + 0j or 1j | |------------------|-----------------|---------------------|----------------|---------------------|------------------| | W/Z+jets | 10780 ± 290 | 13380 ± 870 | 6510 ± 250 | 7410 ± 670 | 38080 ± 1170 | | Multi-jet | 890 ± 24 | 256 ± 17 | 669 ± 25 | 212 ± 19 | 2027 ± 43 | | Top | 170 ± 34 | 164 ± 33 | 489 ± 98 | 500 ± 100 | 1330 ± 270 | | Dibosons | 397 ± 79 | 414 ± 83 | 161 ± 32 | 204 ± 41 | 1180 ± 240 | | Total Background | 12240 ± 300 | 14210 ± 870 | 7830 ± 270 | 8330 ± 680 | 42600 ± 1200 | | Observed | 11988 | 13906 | 7543 | 8250 | 41687 | | Signal (400 GeV) | 14 ± 3.6 | 12 ± 3.1 | 18 ± 4.7 | 14 ± 3.6 | 58 ± 15 | Dominant backgrounds are W/Z+jets ## The H→WW→Ivqq Exclusion Limit - Signal extracted using a maximum likelihood fit to the background modelled by the sum of two exponentials - For 350 < m_H < 420 GeV, the 95% CL is \sim 2.7 x SM cross-section - Expected limit in this range is ~4 x SM cross-section #### Conclusions - Presented latest results from ATLAS in the H→WW→IvIv and H→WW→Ivqq channels - No evidence (yet) for the Higgs boson - H→WW→IvIv analysis excludes the SM Higgs for 154 < m_H < 186 GeV at 95% CL - cf. expected exclusion range: 135 < m_H < 196 GeV - H→WW→Ivqq channel obtains a limit of ~2.7σ_{SM} - A small deviation of ~2σ between the expected and observed limits is observed in the range 110 < m_H < 150 GeV in the H→WW→IvIv analysis - Neighbouring mass points are highly correlated due to the mass resolution - Stay tuned as we close in on the SM Higgs boson! # Back up #### $H \rightarrow WW \rightarrow IVIV$ in 2011 #### **EPS** ## **Lepton-Photon** # **Systematic Uncertainties** | Source of Uncertainty | Treatment in the analysis | |-----------------------------------|---| | Jet Energy Resolution (JER) | ~ 14%, see Ref. [69] | | Jet Energy Scale (JES) | Takes into account close-by jets effect, jet flavor composition uncertainty | | | and event pile-up uncertainty in addition to global JES uncertainty | | | Global JES < 10% for $p_{\rm T}$ > 15 GeV and $ \eta $ < 4.5, see Ref. [70] | | | Pile-up uncertainty 2-5% for $ \eta < 2.1$ and 3-7% for $2.1 < \eta < 4.5$ | | | These are summed in quadrature before application. | | Electron Selection Efficiency | Separate systematics for electron identification, | | | reconstruction and isolation, added in quadrature | | | Total uncertainty of 2-5% depending on η and E_T | | Electron Energy Scale | Uncertainty smaller than 1%, depending on η and E_T | | Electron Energy Resolution | Energy varied within its uncertainty, 0.6% of the energy at most | | Muon Selection Efficiency | $0.3-1\%$ as a function of η and $p_{\rm T}$ | | Muon Momentum Scale | η dependent scale offset in p_T , up to $\sim 0.13\%$ | | Muon Momentum Resolution | $p_{\rm T}$ and η dependent resolution smearing functions, $\leq 5\%$ | | b-tagging Efficiency | $p_{\rm T}$ dependent scale factor uncertainties, 5.6-15%, see Ref. [71] | | b-tagging Mis-tag Rate | up to 21% as a function of p_T , see Ref. [71] | | Missing Transverse Energy | 13.2% uncertainty on topological cluster energy | | | Electron and muon p_T changes from smearing propagated to MET | | | Effect of out-of-time pileup: MET smeared by 5 GeV in 1/3 of MC events | | Luminosity | 3.7% [25] | ## **Z**→TT Rejection - Reconstruction m_{ττ} by assuming - leptons arise from Z→TT decays - neutrinos are collinear with the leptons - Reject the event when - the energy fractions of the visible decay products are positive - i.e. $x_{\tau 1} > 0$ and $x_{\tau 2} > 0$ - and the invariant mass is consistent with the Z - i.e. $|m_{\tau\tau} M_Z| < 25 \text{ GeV}$ - Only applied in H + 1j, because in H+0j the leptons are more often back-to-back